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Abstract 

We present a canonical system for comonads which can be extended to the notion of a computational 
comonad [BG91] where the crucial point is to find an appropriate representation. These canonical 
systems are checked with the help of the Larch Prover [GG91] exploiting a method by G. Huet 
[Hue90a] to represent typing within an untyped rewriting system. The resulting decision procedures 
are implemented in the programming language Elf [Pfe89] since typing is directly supported by this 
language. Finally we outline an incomplete attempt to solve the problem which could be used as a 
benchmark for rewriting tools. 
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1 Introduction 

The starting point of this work was to provide methods for checking the commutativity of diagrams arising in 
category theory. Diagrams in this context are used as a visual description of equations between morphisms. 
To check the commutativity of a diagram amounts to check the equality of the morphisms involved. One 
way to support this task is to solve the uniform word problem for this category. Of course this is not always 
decidable. 

A monoid is a very useful mathematical notion which is described equationally and which has a decidable 
uniform word problem. The equations can be characterized by diagrams as in Figure 1. A monad is the 
categorical generalization of the this concept [ML71]. This gives evidence that there can be a canonical 
system for monads, too. 

Recently the concept of a monad became important also in computer science. In [Mog89] it was used to 
structure the semantics of programming languages which later was applied to structure purely functional 
programs as in [Wad93]. 

In [Geh94] we reduced the uniform word problem for monads to the uniform word problem for adjunctions 
exploiting theorems from category theory [BW85]. But when doing the same for a comonad the resulting 
system could not be extended to the notion of a computational comonad [BG91] which is used to study the 
intensional semantics of programming languages. 

In this paper we describe a canonical system for computational comonads which is based on a different 
canonical system for comonads. It seems that the main difficulty in handling these equational theories consists 
of an appropriate reformulation of the problem with the help of an equivalent theory where Cartesian closed 
categories are a well known instance [Hue90a]. In that case the decision problem is transferred from the 
language of a CCC into the language of a typed lambda calculus. 

Morphisms in a category come together with a type depending on two objects - source and target. These 
have to be taken into account when doing rewriting. In the verification of the canonical system we will deal 
with types in the frame of the Larch Prover [GG91] as suggested in [Hue90a]. Finally the resulting decision 
procedures were implemented in the programming language Elf [Pfe89] which directly supports dependent 
types and they were applied to examples from [BG91] dealing with computational comonads. 

At the end we will briefly describe another attempt to solve the same problem with the help of rewriting 
over a congruence. Since for this congruence known methods do not apply and unification modulo a homo- 
morphism is not enough we give a description formalizing powers of the endofunctor. This requires to handle 
at least addition of natural numbers and becomes very hard for rewriting. 

The main contributions of this paper consist of: 

- a representation of comonads which is suitable for rewriting and can be extended to the notion of a 
computational comonad providing a canonical system, 

- the presentation of the method for encoding types within an untyped framework by using the example 
of a computational comonad, 

- another demonstration of the usability of Elf as a tool for typed rewriting. 

At the end we conclude and suggest future work. 

2 Definitions 

In this section the definition of a comonad [BW85] and a computational comonad [BG91] are given. Further- 
more the notion of the Kleisli category is introduced. We assume throughout that the morphisms between 
two objects form a set. 

Definition 1 (Comonad). Let C be a category. A comonad CM = (T,<r,<5) on C is an endofunctor T : 
C -, C with two natural transformations c : T — Ic and 6 : T — (T o T) where the following laws are 

satisfied: 
(Coml) T(8A)o6A=bT(A)obA 

(Com2) T(eA) o6A = idT{A) 

(Com3) eT(A) ° &A = idT(A) 



uxl n x 1 1 X n 
M x M x M —- ► M x M    1 x M - ► M x M  M x 1 

1 X ß\ 

M x M 
I1 

associativity 

I* 1* 
M 

identity   laws 

Fig. 1. laws of a monoid in form of diagrams 

The laws for a comonad can be visualized by diagrams as in Figure 2 which is very similar to the diagrams 
of a monoid cf. Figure 1 (a real correspondence can be better seen for monads). 

Note 2.  Let C be a category. A comonad CM — (T,e,6) can be characterized by the following equational 
specification: 

idß °/A~B - f 

fA-B o id.A = f 

{/A3^A4 ° gA2-A3) ° hAl^A2 = f ° (g o h) 

T(idA) = idT(A) 

T(fA2~A3 O 9A1-A2) = T(f) o T(g) 

CB oT(fA^B) = f o(A 

T(T(fA-.B))o6A=6BoT(f) 

T{SA) o6A = <*>7(.4) o 6A 

T(eA)o6A = idT{A) 

*T(A) °{>A = idT(A) 

(1) 

(2) 

(3) 

(4) 

(•r>) 

(G) 

(7) 

(8) 

(9) 

10) 

Definition3 (Kleisli category). Let CM = (T,c,6) be a comonad on the category C. Then the corre- 
sponding Kleisli category K is defined by: 

objects same objects as C 
morphisms HomK(A, B) - Homc(T(A), B) 
identity of object A (A 

composition of / £ Hom^(A2, A3) 
and g £ HOTTIK(A1,A2) (f °K g) ■= I °c T(g) oc 6Ai 

Remark. It can easily be verified that this construction actually is a category cf. [BW85]. We present it since 
it will be useful for characterizing comonads in another way. 

Definition4 (Computational Comonad [BG91]).  Let C be a category and CM = (T, i,6) be a comonad 
on C. A computational comonad CCM = (T,e,6,j) is a comonad having additionally one further natural 

T(A) T2(A)        T(A) 

\T(6A)   6A 

SA ^2 T'(A) 

MT, A T(.-l) T(M) 

T2(A) 
?T(A) 

- r3(^\)     T2(A) 

associativity 

CT(A) 
unit   laws 

T(A) 

Fig. 2. comonad laws 



transformation 7 : Ic -*T fulfilling the laws: 

(CComl) eA°7A=idA 
(CCom2) 6A°7A = 7T(A) ° 1A 

Note 5. Let C be a category. A computational comonad CCM = (T,c,8,y) can be characterized by an 
equational specification with the further equations: 

T(fA^B)olA=7Bof (11) 

tA°7A= id A (12) 

&A°lA = lT(A)°lA (13) 

3    An Extensible Canonical System for a Comonad 

In this section a rewriting system for comonads is presented and proved to be canonical. This particular 
representation of comonads is suitable to be extended to the notion of a computational comonad where a 
canonical system can be achieved, too. 

Remark. The problem in using the original equational specification of a comonad comes from the fact that 
T is an endofunctor. This means that it can be iterated. But iteration requires the treatment of integer 
exponents which becomes difficult. Another problem is that e interacts with T but 6 interacts with T o T. 
This difference gives rise to complications, too. 

Note 6. How can one take advantage from the Kleisli category which is formulated in terms of the given 
category? The law for multiplication in the Kleisli category suggests another auxiliary definition: 
9T(A)^B '■- T(s) °c 6A

 (called the Kleisli star) such that f°K9 = f°c 9*- Formulating the categorical laws 
for the Kleisli category with this new function we get: 

in    K in   C 

f = id(K) °K f =        e°c f* 
f = f oK id(K) =        foce* 
(f °K g)°K h  = (f oc g*) oc h* 

II II 
foK(g°Kh)=foc(goch*)* 

With setting vA ■= £A (called the unit of the Kleisli category) these equations can be reformulated as: 

(CK11) vBof*(A)^B=f 
(CK12) v*A = idT{A) 

(CK13) 9T(A2)-~A3 ° hT(Al)-A2 = (fl ° >1*)* 

Lemma7. A comonad can be completely characterized by (id,o,v, *) on the level of morphisms assuming 
it is known how T acts on objects. 

Proof cf. [Man76]. The other components can be expressed as: 

:= VA (A 

6A 

TUA-*B) if0VA)* 

Remark. This gives a more compact way of presenting a comonad since it was previously described in terms 
of (id,o,T,e,6). Nevertheless the action of T on the object level has to be given since it plays a role in the 
typing information in the rules CK11-3. This presentation can now be used to formulate a canonical system 
for comonads. 



Propositions. Assuming it is known how T : C — C acts on objects there is the following canonical system 
COM for a comonad: 

idß °/.4-B —■ f (!) 

fA^B o idA —► / (2) 

(fA3-A4 ° 9A2~A3) © hAl~A2  ' / ° (<7 ° M (3) 

vA —>idT(A) (4) 

V
B°JT(A)-B —"/ (5) 

fT(A2)-A3°9T(Al)~A2   (Z0?*)* (6) 

VA3 O (ft(A2)~A3 ° 0Al-*T{A2))  ' I °0 (") 

fr(AZ)-AA ° (9T(A2)~A3 ° hAl~T(A2))  " (/ ° 9*)* ° h (8) 

Proof. The correctness of this result was verified with the help of the Larch Prover. The check of the critical 
pairs can be seen in the appendix. It was done twice: firstly without taking the typing of morphisms into 
account and secondly including the typing. Here we only give the termination argument with the help of a 
polynomial interpretation I (cf. [Lan79]): 

li(id) = l2(id) = I3(id)= 1 

Zi(/°<7) = Ii(f)+li(9) 
In(fog) = 2*l2(f)*l,(g) 

Uf°9) = 2*I3(f) + l3(u) 
2i(v)=l2(v) = I3(v)= 1 

Zi(/*) = Ii(/)+2 

I2(D =I2(/) + 2 

I3(D =I3(/) + 2 

!(/):= (Ii(/),I2(/),l3(/)) 

These triples of natural numbers are ordered lexicographically where the first component has the highest 
priority. Also this ordering is expressible in the Larch Prover and is given in the appendix. In the next section 
we will give more details about the typing. G 

Remark. The termination argument in this case did not need any information from the typing. This is 
different to typed A-calculus where mainly the types are used to prove termination. Starting from the 
canonical system COM we can try to extend the result to a computational comonad. 

Note 9. How can the additional equations for a computational comonad be reformulated to fit into the new- 
representation? Especially the references to T and 6 have to be avoided. The key observation comes from 
the following equation: 

fr(A)-B ° '(A = T(f) o«jo -yA = T(f) o jTiA) o 7,t =7ßo/o -/.., 

Here both rules from the original presentation which involve T and 6 have been applied leading to the single 
equation: 

Pr(A)-B ° '(A - IB ° / ° 1A 

This equation together with VA °"/A — id A suffices to describe a computational comonad. 

LemmalO. A computational comonad can be completely characterized by (/V/,o,t>, *,7) on the level of 
morphisms assuming it is known how T acts on objects where y is described by the equations: 

(Gaml) t'4 o -jA = id A 

(Gam2) IT(A)-B ° 7,i = 7ß ° / ° 1A 



Proof. It has to be shown that the previous three equations for 7 can be derived: 

T(fA-B) ° 1A = (/ ° vAy o jA = yB o (/ o vA) o lA = 7B o / 

EA O 7A = vA o -yA = idT(A) 

&A°1A= i<$r(A) °7A = 1T(A) o idr(A) °JA= 7T(A) ° 1A 

Theorem 11. Assuming it is know how T : C -* C acts on objects there is the following canonical system 
CCOM for a computational comonad extending the canonical system COM 

VA ° 1A —► id A (9) 

ft{A)~B °jA^7Bo(fo7A) (10) 

UBO(7B°/A-B)—►/ (n) 

9T(A2)~A3 ° (TA2 ohAX^A2)  >7AZ°{g° {lÄ2 oh)) (12) 

Proof. Again the check of the critical pairs was done in the Larch Prover which can be seen in the appendix. 
For the typing we refer to the next section. The previous polynomial interpretation was extended by: 

Ii(7) = I2(7)= ^(7) =1 

Remark. At this point it should be stressed that the choice of the representation for cornonads was not 
obvious to us. The introduction of the auxiliary * was necessary to succeed. This example could be used 
to test rewrite tools which allow the extension of the signature as in [KZ89] to which extent this may be 
automated. 

4    Encoding Types in LP 

Here the method due to G. Huet (cf. [Hue90a]) is demonstrated with the concrete example of a computational 
comonad. 

Remark. In a category it is important to check the compatibility of morphisms in order to compose them. 
When we assume to start with compatible morphisms the application of the three untyped rules describ- 
ing the categorical axioms coincides with the application of the typed version. Since functors and natural 
transformations also act on the level of morphisms one also has to treat this additional information. 

Problem 12. How can one check critical pairs for a rewriting system describing categorical notions taking 
the level of objects into account? A morphism now becomes a type depending on two objects - source and 

target. 

Solution 13. On the level of objects usually a simple test of equality is done to check the compatibility of 
morphisms. Thus the unification mechanism which is present for rewriting can be exploited to perform this 
check, too. The typing information has to be encoded with a new function symbol representing the dependent 
typing. In the case of categories this looks like "mor(/,a,6)" where / is the untyped form of the morphism 
and a,b are source and target, resp. 

Example 1. As an example we consider a computational comonad in the presentation which yields the canon- 
ical system. As the way to present our example we choose the specification language of the Larch Prover. 
The sort and variable definitions for the untyped case are: 



declare sort M 

declare variables i,  g, 

declare operators 

id: -> M 

*: M,M -> M 
counit: -> M 

costar: M -> H 

'/. morphisms 

h: M 

'/, identity 
'/. composition 

*/, counit 

*/. Kleisli 

For the typed case the definitions look like this: 

declare sort H        '/, typed morphisms 

declare sort M'       '/. untyped morphisms 

declare sort 0        '/, objects 
declare variables I'.g'.h': M' 

declare variables ol, o2, o3, o4: 0 

declare operators 

id: -> M'      */. identity 

*:   M,M -> M' '/. composition 
counit:   -> H'      '/, counit 
costar:   H -> M'  '/. Kleisli 
mor:  M',0,0-> M 7, explicit typing 
t':   0 -> 0 '/, functor on object level 

The following table demonstrates the translation from the untyped case into the typed case. 

morphism untyped version typed version 

foi~02 
idoi 

/02 —03 ° 9oi — 02 

vo\ 
f* 

i 
id 

* * g 
counit 

costard) 

mor(f,  ol,   o2) 
mor(id,  ol,   ol) 

mor(mor(f,o2,o3)*mor(g,ol,o2),ol,o3) 
mor(counit,  t'(ol),   ol) 

mor(costar(mor(i,  t'(ol),  o2)),   t'(ol),  t'(o2)) 

Exploiting this translation the rewriting system of the computational comonad was verified again respecting 
the typing. This can be seen in the appendix. 

Remark. All the typing information had to be hand-coded which is very error-prone. Unfortunately the Larch 
Prover did not support this kind of type processing. Therefore we implemented the final decision procedures 
for comonads and computational comonads in the logic programming language Elf which supports dependent 
types directly. 

5    Implementation in Elf and Application 

Here it is shown how the canonical system for computational comonads can be applied where examples are 
taken from [BG91]. The actual run of the test can be found in the appendix. 

Because of the difficulty to represent dependent types in a conventional rewriting tool like the Larch 
Prover we implemented the rewriting in the logic programming language Elf. We think that this approach 
has several advantages: 

- Types help to encode morphisms correctly but also represent judgements via the "propositions as types 
principle". 

- Elf does not only give an answer substitution but also a term representing the proof which can be used 
for further inspection. 

- Since it is a programming language several rewriting strategies which fit the problem can be implemented. 
- Elf allows additionally the treatment of higher order rewriting since the language supports higher order 

types. 

6 



- It is also possible to formulate the concept of critical overlaps in the language. 
- Elf allows to prove meta-theorems as the soundness of rewriting with respect to an axiomatic definition 

of the equality. 

An Elf program is split into a static and a dynamic part. The former is only used for type checking 
whereas the latter is used for proof search. In the appendix both these parts of the program are shown. The 
dynamic part makes already use of the definitions in the static part so that only in a few cases the type has 
to be made more explicit. 

The sample queries which can be seen in the trace correspond to [BG91]. There a pair of functors is 
defined relating the category C and the Kleisli category K. We have: 

alg : C —► K   defined by alg(fA-*ß) '■= f oiA 
fun : K —► C defined by fun(fT(A)->B) '■= f °7A 

The queries are the test whether alg and fun are indeed functors. Furthermore the following equalities 
were checked: 

fun o alg — Ic 
alg o fun =e IK where f =e g <=> fun(f) = fun(g) 

The test of equality proceeds in two steps where the first one does the translation into the representation 
which can be used for normalization and the second one does the normalization. The knowledge about the 
definition of alg and fun is already coded in the translation process. 

6    An Incomplete Attempt: Rewriting over a Congruence 

In this section we sketch another attempt to achieve a canonical system for comonads which should be 
extended to computational comonads as well. 

Our attempt was motivated by trying to remain within the given specification of a comonad in terms of 
(id,o,T,e,8). Our approach was to take the equational specification of a comonad as presented above, to 
orient all the equations from left to right, but to work over the congruence generated by the equations 3 for 
associativity and 5 for the endofunctor. 

Working over this congruence results in finite congruence classes which can be computed and have a 
canonical representation when orienting both rules from left to right. Thus the reducibility of terms is 
decidable cf. [Bac91]. Furthermore it is easy to find a polynomial interpretation which is decreasing on the 
rules and remains constant for the congruence. The hard part here is to show confluence. 

Neither the left-linear rule method by Huet (cf. [Hue80]) succeeded although the rules are left-linear nor 
the existence of a unification algorithm for a homomorphism (equation 5) as given in [Vog78] but without 
associativity did suffice. 

Nevertheless the structure of the rules is rather simple since the composition occurs there only once. 
Besides the usual critical overlaps new ones have to be considered due to the congruence as for example: 

T{f) o eT o 6 <- €T o T(T(f)) o8^eTodo T(f) 

We attempted to formalize this with rules involving exponentiation of the endofunctor as: 

Tn(eB) o T"
+1

(/A_B) — Tn(f) o Tn(eA) 
Tn+2(fA^B)°Tn(8A)-+T"(6B)oTn+'(f) 

where each such rule comes together with the completed version from associativity. But this really required 
the treatment of natural numbers and addition which complicates the situation since AC-unification becomes 
necessary. On the other hand exponents are always ground in a concrete decision problem. 

Since the amount of rules was constantly growing we finally looked for a more appropriate formulation 
of the theory of a comonad although the structure of the rules for a computational comonad follow the same 
pattern. It is possible that a formalization with the ReDuX [Bün93] system which is able to handle inductive 
completion also in the presence of AC-operators may succeed. In the literature there several new methods 
are presented which try to handle to handle infinite sets of rules arising from completion. 



7    Conclusions and Future Work 

The uniform word problem of computational comonads was shown to be decidable by extending an appro- 
priate canonical system of comonads. The critical pair check had to take the presence of types into account 
which come from source and target of a morphism. This suggested to use the logic programming language 
Elf to implement typed rewriting because of its direct support of dependent types. Furthermore the user 
has direct influence on the strategy for rewriting. For future work we want to continue in two directions - a 

theoretical and a practical. 
The notion of a monad as used in functional programming [Wad93] still has to be investigated. Since this 

requires the treatment of higher order rewriting [Nip91] Elf is still a suitable tool since it supports higher 
order types. This would give the right frame to reason about certain monadic functional programs. 

In practice it would be very helpful to allow diagrams as a compact visual encoding of equations as input 
to the prover. The output could also be displayed in an appropriate form. In [FS90] one can already find a 
suitable graphical language used in the context of categories. 
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Appendix 

A    LP Traces 

Here the check of termination and confluence with the Larch Prover are shown. For termination the typing 
has not been taken into account, i.e. the termination argument does not make use of types. Afterwards the 
check of critical pairs is repeated in a setting which also includes types. 

A.l     Termination in LP 

Larch Prover  (17 March 1993)  logging on 7 October 1994 17:55:44 to 
'/usrO/wgehrke/Data/lp/comp_comonad/termination.lplog'. 

LP2:   execute termination 
LP2.1:  declare sort M 7. morphisms 
LP2.2: declare variables f, g, h: M 
LP2.3: declare operators 

id:   -> M 7. identity 
*: M,M -> M    7. composition 
counit: -> M   7. counit 
costar: M -> M 7. Kleisli 

LP2.4: set ordering polynomial 3 
The ordering-method is now 'polynomial 3'. 
LP2.5: register polynomial    id    1 
LP2.6: register polynomial    *     x+y, 2*x*y, 2*x+y 
LP2.7: register polynomial    counit 1 
LP2.8: register polynomial    costar x + 2 

LP2.9: assert 
7.  category 

id * i == f 
f * id == f 
(f * g) * h == 1 * (g * h) 

7.  comonad 
counit * costar(f) == f 
costar(counit) == id 
costar(f) * costar(g) == costar(f * costar(g)) 

Added 6 equations named user.l, ..., user.6 to the system. 
The system now contains 6 rewrite rules. 
LP2.10: complete 
The following equations are critical pairs between rewrite rules user.4 and 

user.3. 
user.7: f * h == counit * (costar(f) * h) 

The system now contains 1 equation and 6 rewrite rules. 
The following equations are critical pairs between rewrite rules user.6 and 

user.3. 
user.8: costar(f * costar(g)) * h == costar(f) * (costar(g) * h) 

The system now contains 1 equation and 7 rewrite rules. 
The system now contains 8 rewrite rules. 
The system is complete. 
LP2.11: display 
Rewrite rules: 
user.1: id * f -> f 
user.2: f * id -> f 
user.3: (f * g) * h -> f * (g * h) 
user.4: counit * costar(f) -> f 
user.5: costar(counit) -> id 



user.6: costar(f) * costar(g) -> costar(f * costar(g)) 
user.7: counit * (costar(f) * h) -> f * h 
user.8: costar(f) * (costar(g) * h) -> costar(f * costar(g)) * h 
LP2.12: declare operators 

gamma: -> M    7, computational comonad 

LP2.13: register polynomial    gamma  1 
LP2.14: assert 

counit * gamma == id 
costar(f) * gamma == gamma * (f * gamma) 

Added 2 equations named user.9, user.10 to the system. 
The system now contains 10 rewrite rules. 
LP2.15: complete 
The following equations are critical pairs between rewrite rules user.9 and 
user.3. 

user.11: h == counit * (gamma * h) 
The system now contains 1 equation and 10 rewrite rules. 
The following equations are critical pairs between rewrite rules user.10 and 
user.3. 

user.12: gamma * (f * (gamma * h)) == costar(f) * (gamma * h) 
The system now contains 1 equation and 11 rewrite rules. 
The system now contains 12 rewrite rules. 
The system is complete. 
LP2.16: display 
Rewrite rules: 

id * f -> f 
f * id -> f 
(f * g) * h -> f * (g * h) 
counit * costar(f) -> f 
costar(counit) -> id 
costar(f) * costar(g) -> costar(f * costar(g)) 
counit * (costar(f) * h) -> f * h 
costar(f) * (costar(g) * h) -> costar(f * costar(g)) * h 
counit * gamma -> id 
costar(f) * gamma -> gamma * (f * gamma) 
counit * (gamma * h) -> h 

user.12: costar(f) * (gamma * h) -> gamma * (f * (gamma * h)) 
End of input from file '/usrO/wgehrke/Data/lp/comp_comonad/termination.lp'. 
LP3: quit 

A.2  Typing in LP 

Larch Prover (17 March 1993) logging on 7 October 1994 17:56:02 to 
'/usrO/wgehrke/Data/lp/comp_comonad/typing.lplog'. 
LP2: execute typing 
LP2.1: declare sort M        7. typed morphisms 
LP2.2: declare sort M'       7. untyped morphisms 
LP2.3: declare sort 0        7. objects 
LP2.4: declare variables f'.g'.h': M' 
LP2.5: declare variables ol, o2, o3, o4: 0 
LP2.6: declare operators 

id: -> M'      7. identity 
*: M,H -> H'   7, composition 
counit: -> M'  7. counit 
costar: M -> M' '/.  Kleisli 
mor: M',0,0-> M 7. explicit typing 
t' : 0 -> 0     '/.  action of the functor on objects 
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user 1: 
user 2: 
user 3: 
user 4: 
user 5: 
user 6: 
user 7: 
user 8: 
user 9: 
user 10 
user 11 



gamma: -> M'   '/. computational comonad 

LP2.7: set ordering left-to-right 
The ordering-method is now 'left-to-right'. 

LP2.8: assert 
*/.  category 

mor(mor(id, o2, o2) * mor(f', ol, o2), ol, o2) == mor(f, ol, o2) 
morCmorCf, ol, o2) * morCid, ol, ol), ol, o2) == mor(f, ol, o2) 
mor(mor(mor(f', o3,  o4)  * mor(g',  o2,  o3),  o2,  o4) 

* mor(h',  ol,  o2),  ol,  o4) 
== mor(mor(f, o3,   o4)  * 

mor(mor(g',  o2,  o3)  * mor(h',  ol,  o2),  ol,  o3),  ol,  o4) 
7,      comonad 

mor(mor(counit, t'(o2), o2) 
* morCcostarCmorCf', t'(ol), o2)), t'(ol), t'(o2)), t'(ol), o2) 

== mor(f', t'(ol), o2) 
mor(costar(mor(counit, t'(ol), ol)), t'(ol), t'(ol)) 
== mor(id, t'(ol), t'(ol)) 
mor(mor(costar(mor(f', t'(o2), o3)),  t'(o2), t'(o3)) 

* mor(costar(mor(g\ t'(ol),  o2)),  t'(ol), t'(o2)), t'(ol),  t'(o3)) 
== mor(costar(mor(mor(f , t'(o2),  o3) 

* mor(costar(mor(g', t'(ol),  o2)),  t'(ol), t'(o2)), 
t'(ol), o3)),  t'(ol), t'(o3)) 

'/,  completed rules 
mor(mor(counit, t'(o3), o3) 

* mor(mor(costar(mor(f', t'(o2), o3)), t'(o2) , t'(o3)) 
* mor(g', ol, t'(o2)), ol, t'(o3)), ol, o3) 

== mor(mor(f, t'(o2), o3) 
* mor(g', ol, t'(o2)), ol, o3) 

mor(mor(costar(mor(f', t'(o3), o4)), t'(o3), t'(o4)) 
* mor(mor(costar(mor(g', t'(o2), o3)), t'(o2), t'(o3)) 

* mor(h', ol, t'(o2)), ol, t'(o3)), ol, t'(o4)) 
== mor(mor(costar(mor(mor(f', t'(o3), o4) 

* mor(costar(mor(g\ t'(o2),  o3)),  t'(o2),  t'(o3)), t'(o2),  o4)) 
,  t'(o2),  t'(o4)) 

* mor(h\ ol,  t'(o2)),  ol,  t'(o4)) 

Added 8 equations named user.l, —, user.8 to the system. 
The system now contains 8 rewrite rules. 
LP2.9: complete 
The system is not guaranteed to terminate. If it does terminate, then it is 
complete. 
LP2.10: assert 
'I,      computational comonad 

mor(mor(counit, t'(ol), ol) * morCgamma, ol, t'(ol)), ol, ol) 
== mor(id, ol, ol) 
mor(mor(costar(mor(f', t'(ol), o2)), t'(ol), t'(o2)) 

* morCgamma, ol, t'(ol)), ol, t'(o2)) 
== mor(morCgamma, o2, t'(o2)) * 
mor(mor(f, t'(ol), o2) * morCgamma, ol, t'Col)), ol, o2), 

ol, t'Co2)) 
'/.  completed rules 

morCmorCcounit, t'Co2), o2) * 
morCmorCgamma, o2, t'Co2)) * morCg', ol, o2), ol, t'Co2)), 

ol, o2) 
== morCg', ol, o2) 
morCmorCcostarCmorCf, t'Co2), o3)), t'Co2), t'Co3)) 

* morCmorCgamma, o2, t'Co2)) * morCg', ol, o2), ol, t'Co2)), 
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ol, t'(o3)) 
== mor(mor(gamma, o3, t'(o3)) * 

mor(mor(f , t'(o2), o3) * 
mor(mor(gamma, o2, t'(o2)) * mor(g', ol, o2), 

ol, t'(o2)), ol, o3), ol, t'(o3)) 

Added 4 equations named user.9 user.12 to the system. 
The system now contains 12 rewrite rules. 
LP2.11: complete 
The system is not guaranteed to terminate.  If it does terminate, then it is 
complete. 
End of input from file '/usrO/wgehrke/Data/lp/comp_comonad/typing.lp'. 

LP3:  quit 

B    Elf traces 

All parts of the Elf program are presented to illustrate the usage of Elf for rewriting making use of dependent 
types. The trace shows the automated proof of examples taken from [BG91]. The current implementation of 
Elfis embedded into an image of the SML/NJ compiler and it is accessible through functions from the top 

level. 

B.l     The Static Part of the Elf Program 

'/.'/,'/, category 
obj       :   type,  '/.name obj  0 
mor       :   obj  -> obj  -> type.   /Cname mor M 
id :   {A:obj} mor A A. 
*    : mor 02 03 -> mor 01 02 -> mor 01 03. '/.infix right 10 * 
'/.'/.'/. comonad description with (T.eps.del) 
T'   : obj -> obj. 
T    : mor A B -> mor (T' A) (T' B). 
eps  : {A:obj} mor (T' A) A. 
del  : {A:obj} mor (T' A) (T' (T' A)). 
7,7,7,  comonad description with counit and costar via Kleisli category 
counit: {A:obj} mor (T' A) A. 
costar: mor (T' A) B -> mor (T' A) (T' B). 
'/,'/.'/,  missing ingredient for a computational comonad 
gamma : {A:obj} mor A (T' A). 
7,7,7,  for checks from paper by Brookes and Geva 
alg  : mor A B -> mor (T' A) B. 
fun  : mor (T* A) B -> mor A B. 

B.2  The Dynamic Part of the Elf Program 

'/,'/,'/, rewriting for computational comonads in the Kleisli category presentation 
rule  : mor A B -> mor A B -> type. 
comonl: rule ((id B) * F) F. 
comon2: rule (F * (id A)) F. 
comon3: rule ((F * G) * H) (F * (G * H)). 
comon4: rule ((counit B) * (costar F)) F. 
comon5: rule (costar (counit A)) (id (T' A)). 
comon6: rule ((costar F) * (costar G)) (costar (F * (costar G))). 
comon7: rule ((counit B) * ((costar F) * G)) (F * G). 
comon8: rule ((costar F) * ((costar G) * H)) ((costar (F * (costar G))) * H). 
compl : rule ((counit A) * (gamma A)) (id A). 
comp2 : rule ((costar F) * (gamma A)) ((gamma B) * (F * (gamma A))). 
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comp3 : rule ((counit B) * ((gamma B) * F)) F. 
comp4 : rule ((costar F) * ((gamma A) * G)) 

((gamma B) * (F * ((gamma A) *G))). 
'/,'/,'/.  rewrite relation for computational comonad 
rew  : mor A B -> mor A B -> type.  '/. try to rewrite 
step : mor A B -> mor A B -> type.  7. do at least one rewrite 

simple: step F F" 
<- rule F F' <- rew F' F". 

step*l: step (F * G) H 
<- step F F' <- rew (F' * G) H. 

step*2: step (F * G) H 
<- step G G' <- rew (F * G') H. 

step"*: step (costar F) H 
<- step F F' <- rew (costar F') H. 

try  : rew F F" 
<- step FF' <- rew F' F". 

fini  : rew F F. 
*/.'/. dynamic equality of morphisms over (id, *, counit, costar, gamma) 
==   : mor A B -> mor A B -> type, '/.name == EQ 

'/.infix none 8 == 
moreq : F == G 

<- rew F H <- rew G H. 
'/.'/.'/. decision procedure for (computational) comonads 
'/,'/. translation of morphisms with the help of the Kleisli category 
trans : mor A B -> mor A B -> type. 
tr_* : trans (F * G) (F' * G') 

<- trans F F' <- trans G G'. 
tr_"* : trans (costar F) (costar F') 

<- trans FF'. 
tr_alg: trans (alg (F : mor AB)) (F' * (counit A)) 

<- trans FF'. 
tr_fun: trans (fun (F : mor (T' A) B)) (F' * (gamma A)) 

<- trans FF'. 
tr_T  : trans (T (F : mor A B)) (costar (F' * (counit A))) 

<- trans FF'. 
tr_e  : trans (eps A) (counit A). 
tr_d : trans (del A) (costar (id (T' A))). 
tr_0  : trans F F. 
'/.'/. dynamic equality of morphisms over (id,*,counit,costar,gamma,T,eps,del,alg,fun) 

===  : mor A B -> mor A B -> type, '/.name === EQU 
'/.infix none 8 === 
cmoneq: F === G 

<- trans F F' <- trans G G' <- F' == G'. 

B.3  A Sample Run 

Standard ML of New Jersey, Version 0.93, February 15, 1993 
Elf, Version 0.4, July 1, 1993, saved on Hon Oct 3 10:03:50 EDT 1994 

val it = 0 : unit 
- initload ["static.elf"]["dynamic.elf"]; 

static, elf 1 static 
dynamic.elf   2   dynamic 
val it = () : unit 
- top(); 
Using: dynamic.elf 
Solving for: rule rew step == trans === 
?- {A} (alg (id A)) === (counit A). '/. alg on id 
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Solving... 
solved 
yes 
?- {01H02H03HF : mor 02 03}{G : mor 01 02} 
(alg (F * G)) === (alg F) * (costar (alg G)). '/. alg on * 

Solving... 
solved 
yes 
?- {A}   (fun  (counit A))  ===  (id A). 7. fun on id' 
Solving... 
solved 
yes 
?-  {01H02H03MF  :  mor  (T'  02)  03}{G  :   mor  (T'  01)  02} 
(fun  (F *   (costar G)))  ===  (fun F)  *   (fun G). 7. fun on *' 

Solving... 
solved 
yes 
?- {AHBHF  :   mor A B}   (fun (alg F))  === F. 
Solving... 
solved 
yes 
?- {AHBHF  :   mor  (T'  A)  B}   (fun  (alg  (fun F)))  ===  (fun F) . 
Solving... 
solved 
yes 
?-  {A}  ((T  (eps A))  *   ((del A)   *  (gamma A)))  ===  (gamma A).   % another positive test 
Solving.. . 
solved 
yes 
?-  {A:obj}  (T  (gamma A))  ===  (del A). 7. test  if refused 
Solving... 
no 
?-  {FHG}  (F * G)  ==  (G  * F). 7. another test  if  refused 
Solving... 
no 

This article was processed using the KTgX macro package with LLNCS style 
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